June 3, 2011
The results indicated that the effect of different microstructural models on the flapping frequency, trajectories, and corrugated and torsional behaviors of the wing cannot be ignored. This is because the sandwich microstructure, consisting of soft matter with fibers in the protein layer and hierarchical structure in the chitin layer, of the longitudinal vein plays an important role in improving aerodynamic efficiency by creating self-adaptability in the flapping, torsion and camber variations of the wing as it twists. Understanding the complete structure of the wing, including the microstructural features and the organic junction between veins and membranes, provides new insight into the flight mechanism of the dragonfly and the wing's biomechanical responses, as shown by the study reported in issue 56 of the Chinese Science Bulletin and to be reported in the future.
0 comments:
Post a Comment